Spatiotemporal flow instabilities of wormlike micellar solutions in rectangular microchannels
نویسندگان
چکیده
منابع مشابه
Numerical Study of Non-Newtonian Flow Through Rectangular Microchannels
A numerical investigation was carried out to solve the flow dimensionless partial differential equations through rectangular microchannels. A purely viscous power law <span style="font-size: 10pt; colo...
متن کاملNonlocal effects in flows of wormlike micellar solutions.
The flow curve of wormlike micelles usually exhibits a stress plateau sigma* separating high and low viscosity branches, leading to shear-banded flows. We study the flow of semidilute wormlike micellar systems in a confined geometry: a straight microchannel. We characterize their local rheology thanks to particle image velocimetry. We show that flow curves cannot be described by a simple consti...
متن کاملSlippage and migration in Taylor–Couette flow of a model for dilute wormlike micellar solutions
9 We explore the rheological predictions of a constitutive model developed for dilute or semi-dilute worm-like micellar solutions in an axisymmetric Taylor–Couette flow. This study is a natural continuation of earlier work on rectilinear shear flows. The model, based on a bead-spring microstructure with non-affine motion, reproduces the pronounced plateau in the stress–strain-rate flow curve th...
متن کاملStrip waves in vibrated shear-thickening wormlike micellar solutions.
We present an instability in vertically vibrated dilute wormlike micellar solutions. Above a critical driving acceleration the fluid forms elongated solitary domains of high amplitude waves. We model this instability using a Mathieu equation modified to account for the non-Newtonian character of the fluid. We find that our model successfully reproduces the observed transitions.
متن کاملMicrostructure and rheology of a flow-induced structured phase in wormlike micellar solutions.
Surfactant molecules can self-assemble into various morphologies under proper combinations of ionic strength, temperature, and flow conditions. At equilibrium, wormlike micelles can transition from entangled to branched and multiconnected structures with increasing salt concentration. Under certain flow conditions, micellar structural transitions follow different trajectories. In this work, we ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2014
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4869476